zero submodule - traduction vers russe
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

zero submodule - traduction vers russe

Essential submodule; Superfluous submodule; Essential ideal

zero submodule      

математика

нулевой подмодуль

ground zero         
  • Monument marking the hypocenter, or ground zero, of the atomic bomb explosion over [[Hiroshima]].
  • In mapping the effects of an atomic bomb, such as on the city of [[Hiroshima]] here, concentric circles are drawn centered on the point below the detonation and numbered at radial distances of 1,000 feet (305 meters). This point below the detonation is called "Ground Zero".
  • The former hot dog stand nicknamed Cafe Ground Zero<ref name="Pentagon" /> in the Pentagon's center courtyard.
  • The [[World Trade Center site]], as it appeared in October 2004.
  • Aerial view of the [[World Trade Center site]] in September 2001.
POINT ON THE EARTH'S SURFACE CLOSEST TO A DETONATION
Ground Zero; Ground 0

['graund'zi(ə)rəu]

общая лексика

эпицентр атомного взрыва

центр

самая середина

ядро

zero-sum game         
  • Zero-sum three-person game
MATHEMATICAL REPRESENTATION OF A SITUATION IN WHICH EACH PARTICIPANT'S GAIN OR LOSS OF UTILITY IS EXACTLY BALANCED BY THE LOSSES OR GAINS OF THE UTILITY OF THE OTHER PARTICIPANTS
Non-zero-sum; Non-zero-sum games; Zero sum game; Zero sum gain; Zero-sum games; Non-zero-sum game; Zero Sum Game; Non-zero sum; Non-zero sum game; Constant sum game; Constant sum; Constant-sum; Fixed sum game; Conflict game; Non zero sum; Negative-sum game; Zero Sum; Zero-sum (Game theory); Zero-sum (game theory); Zero sum; Zero-Sum Game; Zero-sum cost; Negative-sum; Zero-sum; Zero-Sum game; Zero–sum game; Non–zero-sum game; Non–zero sum game; Win-lose deal; Lose-win deal; 0 sum game; Zero sum deal; Zero-Sum; Nonzero-Sum Game
игра с нулевой суммой [с нулевым исходом]

Définition

Антагонистические игры
(матем.)

понятие теории игр (см. Игр теория). А. и. - игры, в которых участвуют два игрока (обычно обозначаемые I и II) с противоположными интересами. Для А. и. характерно, что выигрыш одного игрока равен проигрышу другого и наоборот, поэтому совместные действия игроков, их переговоры и соглашения лишены смысла. Большинство азартных и спортивных игр с двумя участниками (командами) можно рассматривать как А. и. Принятие решений в условиях неопределённости, в том числе принятие статистических решений, также можно интерпретировать как А. и. Определяются А. и. заданием множеств стратегий игроков и выигрышей игрока I в каждой ситуации, состоящей в выборе игроками своих стратегий. Таким образом, формально А. и. есть тройка ‹А, В, Н›, в которой А и В - множества стратегий игроков, а Н (а, b) - вещественная функция (функция выигрыша) от пар (а, b), где а A, b В. Игрок I, выбирая а, стремится максимизировать Н(а, b), а игрок II, выбирая b, - минимизировать Н (а, b). А. и. с конечными множествами стратегий игроков называются матричными играми (См. Матричные игры).

Основой целесообразного поведения игроков в А. и. считается принцип Минимакса. Следуя ему, I гарантирует себе выигрыш

точно так же II может не дать I больше, чем

Если эти "минимаксы" равны, то их общее значение называется значением игры, а стратегии, на которых достигаются внешние экстремумы, - оптимальными стратегиями игроков. Если "минимаксы" различны, то игрокам следует применять смешанные стратегии, т. е. выбирать свои первоначальные ("чистые") стратегии случайным образом с определёнными вероятностями. В этом случае значение функции выигрыша становится случайной величиной, а её Математическое ожидание принимается за выигрыш игрока I (соответственно, за проигрыш II). В играх против природы оптимальную смешанную стратегию природы можно принимать как наименее благоприятное априорное распределение вероятностей её состояний. В А. и. игроки, используя свои оптимальные стратегии, ожидают получения (например, в среднем, если игра повторяется многократно) вполне определённых выигрышей. На этом основан рекуррентный подход к динамическим играм в тех случаях, когда они сводятся к последовательностям А. и., решения которых можно найти непосредственно (например, если эти А. и. являются матричными). А. и. составляют класс игр, в которых принципиальные основы поведения игроков достаточно ясны. Поэтому всякий анализ более общих игр при помощи А. и. полезен для теории. Пример такого анализа даёт классическая Кооперативная теория игр, изучающая общие бескоалиционные игры через системы А. и. каждой из коалиций игроков против коалиции, состоящей из всех остальных игроков.

Лит.: Бесконечные антагонистические игры, под ред. Н. Н. Воробьева, М., 1963.

Н. Н. Воробьев.

Wikipédia

Essential extension

In mathematics, specifically module theory, given a ring R and an R-module M with a submodule N, the module M is said to be an essential extension of N (or N is said to be an essential submodule or large submodule of M) if for every submodule H of M,

H N = { 0 } {\displaystyle H\cap N=\{0\}\,} implies that H = { 0 } {\displaystyle H=\{0\}\,}

As a special case, an essential left ideal of R is a left ideal that is essential as a submodule of the left module RR. The left ideal has non-zero intersection with any non-zero left ideal of R. Analogously, an essential right ideal is exactly an essential submodule of the right R module RR.

The usual notations for essential extensions include the following two expressions:

N e M {\displaystyle N\subseteq _{e}M\,} (Lam 1999), and N M {\displaystyle N\trianglelefteq M} (Anderson & Fuller 1992)

The dual notion of an essential submodule is that of superfluous submodule (or small submodule). A submodule N is superfluous if for any other submodule H,

N + H = M {\displaystyle N+H=M\,} implies that H = M {\displaystyle H=M\,} .

The usual notations for superfluous submodules include:

N s M {\displaystyle N\subseteq _{s}M\,} (Lam 1999), and N M {\displaystyle N\ll M} (Anderson & Fuller 1992)
Traduction de &#39zero submodule&#39 en Russe